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Abstract

A recent paper by Mishchenko et al. compares near-coincident MISR, MODIS, and AERONET
aerosol optical depth (AOD) products, and reports much poorer agreement than that
obtained by the instrument teams and others. We trace the reasons for the discrepancies
primarily to differences in (1) the treatment of outliers, (2) the application of absolute vs.
relative criteria for testing agreement, and (3) the ways in which seasonally varying spatial
distributions of coincident retrievals are taken into account.

1. Introduction

During the past decade, the research community has found many productive ways to use
the Multi-angle Imaging SpectroRadiometer (MISR) and MODerate resolution Imaging
Spectroradiometer (MODIS) aerosol products. MISR and MODIS, both of which fly aboard
the NASA Earth Observing System’s Terra spacecraft, represent a significant advance over
the previous generation of space-based aerosol instruments. Relatively high spatial
resolution imaging, calibration accuracy and radiometric stability, along with an increased
number of spectral bands for MODIS and the combination of spectral bands and multiple
view angles from MISR, have led to more robust aerosol optical depth (AOD) retrievals over
both water and land, with less restrictive algorithmic assumptions [1-5]. In addition, the
MODIS algorithm derives coarse vs. fine-mode ratio over water, whereas MISR can
distinguish about a dozen aerosol air mass types, under favorable retrieval conditions,
based on particle size, shape, and single-scattering albedo constraints. And unlike most



remote-sensing algorithms that assume aerosol properties based on seasonally and/or
geographically fixed prescriptions, MISR AOD retrievals are performed self-consistently,
using retrieved aerosol types.

Critical to the application of these satellite products is validation, which entails establishing
uncertainties, assessing strengths and limitations, and reporting overall data quality. The
MISR and MODIS instrument teams, as well as many other research groups, have
performed such evaluations using a variety of methods, ranging from theoretical sensitivity
studies to comparisons with other satellite and suborbital data sets [e.g., 2, 6-23]. Over the
past ten years, the exchange of data, information, and ideas represented by this body of
work has yielded better characterization of existing products, as well as algorithm
upgrades.

Although operating from the same Terra satellite, MODIS and MISR offer different views of
aerosols, clouds, and surface radiation. Even when viewing nearly coincident target scenes,
these instruments are sensitive to different properties of the scene, due to differences in
their observational approaches. Aside from global retrieval coverage differences [e.g., 12],
MISR and MODIS do not observe, or perform aerosol retrievals on, top-of-atmosphere
radiances from exactly the same locations within their 17.6 km and 10 km retrieval
regions, respectively. Where variability occurs on spatial scales of ~10 km or less, this
leads to sampling differences even for “collocated” observations [11]. MISR and MODIS
data are often complementary, so differences do not always represent algorithm issues;
sometimes they offer a deeper understanding of realistic natural scenes. For example, case
studies that take detailed account of instrument sampling have shown where MISR and
MODIS–retrieved AOD differences are due to aerosol spatial variability [9, 11].

Broad statistical comparisons among MISR, MODIS, AERONET surface-based, and aircraft
aerosol measurements under a wide range of environmental conditions have been
complemented by representative case-study analyses by many different groups, often
aimed at identifying the underlying causes of discrepancies [e.g., 2, 6, 8-10, 12, 14-16, 18-
21]. Explanations for the most prominent differences between the MISR Standard aerosol
products and validation data are given in several of the papers cited above, making use of
other studies where individual effects for dust [13], spherical absorbing and non-absorbing
particles [7], thin cirrus [17], and algorithmic issues [11] are explored for representative
cases with the MISR Research aerosol retrieval algorithm. Detailed analysis of MODIS
issues is presented in [2, 4, 14, 20, 21, 24-27].

In their recent paper, Mishchenko et al. [28] evaluate the MISR and MODIS AOD products in
light of near-coincident AERONET observations, and report that their results are much less
favorable than those presented in the studies listed above. Given this disparity, the current
response addresses the following question: How do Mishchenko et al. [28] reach
conclusions that seem to contradict the published work of others?

Analysis shows that the largest contribution to the disparate results comes from
differences in the treatment of outliers; other factors are involved as well, such as the
seasonally varying spatial distribution of coincident MISR-MODIS AOD retrievals, and
differences in the application of absolute vs. relative criteria for testing agreement. We
review the implications of these below, and clarify several other technical points.
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2. The Influence of Outliers. The treatment of outliers in Mishchenko et al. [28] has a major
effect on the overall magnitude of the errors they report. In [28, Figure 1c], a normalized
standard deviation metric (RSTD) is used to assess the MISR and MODIS time series,
separately for ocean and land. The RSTD, in this case a measure of MISR-MODIS relative
discrepancy, is calculated from the root-sum-square of the MISR-MODIS AOD difference.
This metric is especially sensitive to the largest outliers, which can be caused by retrieval
error or by sampling differences, as mentioned above. In addition, although the sampling
differences tend to produce outliers of both signs, AOD retrieval errors are often systematic
rather than random [10, 11], and most are localized geographically within regions where
certain algorithmic assumptions are violated [12, Figure 6; 29, Section 3.4]. As a statistical
tool, the RSTD is most appropriate for assessing random error about an expected value;
interpretation of RSTD values under other circumstances is not always straightforward.

Despite generally good agreement between MISR and MODIS in the AOD time-series [28,
Figure 1a], high percentage-differences appear in the RSTD plots [28, Figure 1c], averaging
around 40% over ocean and near 90% over land. The high RSTD values are dominated by
a small fraction of cases having large AOD differences, which are then squared in the
summation of the RSTD statistic of [28]:

RSTD= 
^
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where xi is the MISR-MODIS AOD deviation, the over-bar indicates the monthly mean, N is
the total number of coincident measurements for the month, and Y is half the sum of the
MISR and MODIS monthly mean AOD values. We demonstrate the contributions of outliers
to the RSTD over land and ocean in two ways. First, we compare the RSTD values with a
metric that replaces the squared deviation in the numerator of the RSTD with the average
(mean) absolute deviation (AAD), and remove the square root, as follows:
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The AAD still weights larger outliers more heavily, but not to the same degree as the root-
sum-square of the RSTD, so the difference between the AAD and RSTD statistics gives an
indication of the influence of outliers [30]. Using as examples the monthly, global,
coincident MISR and MODIS data for January and July 2006, the RSTD amounts to 32% and
37% over ocean, and 85% and 110% over land, respectively. The corresponding AAD
values drop to 21% and 23% over ocean, and 62% and 61% over land (Table 1). The
deviations are much higher over land, where large outliers are more probable, due to
generally higher AOD values and greater spatial variability near sources, as well as greater
differences in the way the MISR and MODIS retrievals treat the surface boundary condition.

RSTD is actually sensitive to the distribution of deviation magnitudes and in general,
increases as the square root of the number of points in the sum [31], whereas it is often
mistakenly interpreted as representing only the average error. So, for example, if all the
deviations in a data set are equal, the RSTD equals the AAD, but as the distribution of



deviations becomes more uneven, RSTD increases, and it is maximal when all the deviation
is concentrated in a single point. If the distribution of deviations were simply Gaussian, the
RSTD would be higher than the AAD by a factor 0.77; the higher RSTD values shown in
Table 1 are considerably greater than that over land, where outliers make especially large
contributions to the RSTD.

A second view of the RSTD situation is given in Figure 1. Here we have arranged the
absolute deviations in rank order, for ocean and land separately, and calculated the RSTD
for progressively larger fractions of the total population. January, March, and July 2006
data are displayed. Note that when the last few percent of the populations are included, the
RSTD values jump considerably – by as much as 40 percent over land. For about 80% or
more of the ocean and land populations, the RSTD values are below 20% and 60%
respectively, which correspond roughly to the AAD values reported in Table 1.

MISR-MODIS AOD comparisons can also be made using a metric that counts each event
equally, such as confidence envelopes, thereby limiting the influence of outliers, rather than
weighting each case by the magnitude of its deviation. To place the RSTD in further
context, we calculated RSTDs comparing the unperturbed MISR AOD values with MISR AOD
values perturbed by an amount comparable to the basic mid-visible AOD measurement
uncertainty reported in [10]. Specifically, we generated a normal distribution of random
numbers (R) with mean zero and standard deviation one, and scaled it to create perturbed
MISR values, as:

MISR ′ = MISR+ [0.05 + 0.05 × R]	 (3)

We then calculated the RSTD using Equation 1, but comparing MISR with MISR’ AODs
(rather than MISR with MODIS). The numerator is just the standard deviation of the
perturbations, whereas the denominator is half the sum of the monthly mean perturbed
and unperturbed AOD values. The results are given in Table 1. (Note that the over-ocean
RSTDs are slightly larger than the corresponding over-land values, because the monthly
mean over-ocean AODs in the RSTD denominators are smaller). The 0.05 perturbations
alone produce RSTD values from over 20% to almost 40%, bracketing the MISR-MODIS
over-ocean RSTD values, and providing a baseline against which to assess MISR-MODIS
comparisons if the RSTD metric is used.

More generally, the RSTD or AAD by themselves do not provide a clear picture of data
product quality:

(1) Aside from weighting events by the magnitude of the deviation, or the deviation
squared, interpretation of the AAD or RSTD values is complicated by the absence of an
absolute criterion to avoid weighting too heavily observations near the lower limit of
measurement sensitivity, as indicated by the calculation related to Equation (3), and
discussed further in Section 3 below. The need for absolute in addition to relative criteria
can be addressed with envelope statistics, or by calculating statistics from data stratified
appropriately by AOD magnitude.

(2) The RSTD and AAD statistics do not distinguish between those differences in near-
coincident MISR and MODIS AOD values due to differences in spatial sampling convolved
with kilometer-scale AOD variability [11, 12], and differences caused by actual limitations
in either or both retrieval algorithms. Sampling differences also have implications for the



way regionally representative values must be constructed from the measurements [e.g.,
32].

(3) Importantly, deeper insight into the behavior of the underlying data, especially over
land, comes from stratifying the observations according to different environmental
conditions, rather than looking only at globally aggregated values [e.g., 10, 12, 29].
(4)Validation of either AOD product must rely on direct comparisons with ground-truth,

stratified based on observational conditions [e.g., 10, 14, 20, 29] to separate the systematic
differences between satellite products that different algorithmic assumptions can produce.
Note that retrieved AOD error, when assessed relative to ground truth, is often smaller
than the MISR-MODIS AOD deviations, again because of systematic differences in algorithm
assumptions [11, 12].

The decision about which metrics best represent the MISR-MODIS relative results depends
upon the way the data are to be used. For example, outliers tend to be localized
geographically, and for applications where AOD values are averaged over large areas, it can
be advantageous to avoid specific regions where known algorithm issues tend to produce
outliers [e.g., 12]. Note that even in such regions, only a small fraction of retrievals is
responsible for the large discrepancies. Again taking January and July 2006 as examples,
about 1% and 0.6%, respectively, of mid-visible AOD for over-ocean MISR-MODIS
coincidences have differences that exceed 0.125; over land, 10% and 6% of coincident-AOD
differences exceed 0.2 for these two sample months [29]. Identification of the locations
where outliers concentrate, and analysis of underlying causes, which range from
unscreened bright coastal water or land surface, to missing mixtures of smoke and dust
optical analogs in the algorithm climatologies, are given in detail elsewhere [11, 12, 29].

3. AOD Confidence Envelopes. Both the MISR and MODIS teams define confidence
envelopes to assess statistical agreement between satellite and near-coincident AERONET
sun photometer AOD results [12, 20]. For example, the MISR team typically reports the
fraction of cases falling within the larger of (0.05 or 0.2 x AOD), and the larger of (0.03 or
0.1 x AOD), representing broader and more restrictive envelopes, respectively [10]. One
attribute of the confidence envelope approach is that it weights all events equally, so a small
fraction of outliers does not exert a disproportionately large influence on the comparison
statistic. Another aspect of the envelopes used is that they apply a combination of absolute
and relative criteria. This is important when using a single metric to assess agreement over
the full range of AOD values.

In different plots, Mishchenko et al. [28] apply relative criteria only, or absolute criteria
only, to the entire high-and-low-AOD MISR and MODIS time series. These choices
contribute to the discrepancy patterns appearing in the plots.

3.1. The need for an Absolute Criterion. An absolute criterion (e.g., 0.05 or 0.03) is
required at very low AOD, to account for measurement error that does not disappear as
AOD approaches zero. All real observations have uncertainty associated with the limits of
measurement sensitivity. So applying only a relative condition (such as RSTD) when
making low-AOD comparisons can produce arbitrarily large percentage differences, even
when the absolute differences between the satellite-retrieved and ground-based validation
values are very small. For example, if AOD retrieval sensitivity is 0.03, for a case where the
actual AOD is 0.01, the calculated relative error can exceed 200%, and yet the reported AOD
can be well within reasonable measurement accuracy.



The effect of applying a relative-only criterion is illustrated by comparing the Envelope and
Relative-only Percent-agreement metrics in Table 1. Over ocean, for example, where AOD
frequently approaches the limit of retrieval sensitivity, the Relative-only percent
agreement statistics are factors of two or three poorer. (Note that the specific confidence
envelopes given in Table 1 are used for comparing MISR AOD directly with AERONET
ground-truth. These envelope metrics produce low values when applied to MISR-MODIS
AOD comparisons over land without reference ground-truth, due to systematic differences
in algorithm assumptions [12, Section IIIC]. Quantitative assessment of the MISR and
MODIS product uncertainties must rely on direct comparisons with ground-truth, which
produce much higher envelope metric values [e.g., 4; 10].)

3.2. The need for a Relative Criterion. A relative criterion (e.g., 20% or 10% of AOD) is
needed because typically, AOD variability in natural settings, as well as some components
of retrieval uncertainty, scale as the AOD itself. For example, spatial sampling differences
occur even for nearly collocated satellite data, and especially when comparisons are made
with surface-based point measurements [9-11]. These sampling differences, convolved
with AOD variability on spatial scales up to about ten kilometers, can produce retrieved
AOD differences about as large as the AOD itself, even when no algorithm error is involved
[e.g., 11, Section 3.2]. Such variability is also demonstrated by the observation that, away
from sources and aerosol plumes, improved agreement is obtained when regional-average
rather than single, minimally distant retrievals are compared with point data [10; 28,
Figures 2a and 2b; 29]. A relative criterion is an appropriate way to perform AOD
comparisons in these situations, provided the AOD is significantly above the limit of
measurement sensitivity.

Figures 2a, 2b, and 4 of Mishchenko et al. [28] apply only absolute criteria to the full MISR
and MODIS time series. They point out that the seasonal variability in fractional agreement
correlates well with the MODIS fraction over ocean [28, Figure 2b], with peaks in northern
winter, and is anti-correlated with the monthly AOD time series [28, Figure 2c]. (Note that
for relative metrics, shown in [28] Figures 1c, 5b, and 6, higher values indicate poorer
agreement, whereas for absolute metrics, plotted in Figures 2a, 2b, and 4, higher values
indicate better agreement.) By applying only an absolute criterion, the variations in [28,
Figures 2a and 2b] are skewed by discrepancies at the high-AOD end of the range of values,
and the observed correlations indicate poorest agreement systematically when AOD is
highest. But other factors, such as sampling, affect the coincident data time-series as well.

4. Seasonal AOD Discrepancy Patterns, and Apparent RSTD Stability. The seasonal
behavior of the time-series plots in [28] is heavily influenced by the spatial distribution of
MISR and MODIS retrieval coincidences. The coincident sampling pattern is mediated by
the geographic location of continents, convolved with the seasonally varying distributions
of solar illumination, cloud, sun glint, snow extent, and ice cover [12, Figure 4]. Seasonally
varying coverage of specific regions where MISR-MODIS AOD discrepancies tend to occur
[11, 12, 29] also contributes to the observed patterns. As such, the aggregated AOD
discrepancy patterns shown in [28] cannot be interpreted simply in terms of satellite
retrieval error.

For example, in the joint MISR-MODIS retrieval data set, observations of the northern mid-
latitude ocean dominate global ocean coverage in January, those of the extra-tropical



oceans dominate coverage in March, and sun glint affecting MODIS precludes coincident
retrievals over nearly all the northern mid-to-low-latitude ocean in July [12, Figure 4e].
Due to the peculiarities of this complex coincidence sampling pattern, “global” mean over-
ocean AOD in the coincident data set is systematically higher in January than in July (Table
1; [28, Figure 1b]), despite typically higher global average over-ocean AOD in July due to
contributions from northern hemisphere dust and smoke.

Over land, the patterns are yet more complex. Taking 2006 as an example, the number of
MISR-MODIS coincidences is nearly the same in January and March, but doubles for July;
AOD is nearly the same in January and July, but peaks in March (Table 1). Some aspects of
MISR-MODIS coincidence coverage patterns are described elsewhere [e.g., 12], but it is
beyond the scope of the current response to assess their impact on specific, globally
aggregated metrics in detail.

In [28, Figures 1c and 6c], an envelope of seasonally repeating RSTD values appears,
despite large fluctuations in monthly mean AOD values and variations in the number of
AERONET sites involved. This is interpreted as a demonstration that the RSTD provides a
robust metric for “100%” of AODs. However, the seasonal pattern of MISR-MODIS
coincident retrievals, convolved with the seasonal patterns of high- and low-AOD values
and locations where MISR-MODIS AOD outliers occur most often, create a regular pattern
of RSTD values as well. It remains to be shown whether the repeatability of the RSTD has
any deeper statistical significance.

5. MISR Outliers and Data Stratification. In [28, Figure 6c and Table 1], spikes in the
MISR-AERONET AOD deviation time series, as compared with that for MODIS are
highlighted, and it is argued that they are caused by MISR’s inability to handle cases of large
AOD over land, due to blurring of surface contrast features that the MISR algorithm uses to
separate atmospheric from surface signals. MISR AOD underestimation over land in high-
AOD situations has been documented in previous publications [9, 10, 12], and
representative cases were analyzed in detail using the MISR Research aerosol retrieval
algorithm [7]. To isolate places and times when algorithm assumptions are violated, we
stratified the satellite data according to different environmental conditions that can affect
the retrieval [10, 14, 29]. This is a key step toward identifying underlying causes that goes
beyond looking only at global statistical aggregates. Based on this work, the MISR AOD
underestimation tends to occur when mid-visible AOD exceeds about 0.4, and actually,
several factors contribute. The MISR team is exploring options for improving the Standard
algorithm in light of the factors producing the high-AOD underestimation [29].

Regarding [28, Figure 6c], only a relative criterion is applied to the full range of AOD, with
multiple comparisons between MISR, MODIS, and AERONET. But unlike [28, Figure 1c],
land and ocean are combined, and near-coincidence with AERONET is required for most of
the Figure 6c plots, so the data set is apparently smaller, and the seasonal pattern is much
noisier. It should also be mentioned that compared to MISR, there are between three- and
over-five times more samples in the MODIS-AERONET data set, due to the much wider
swath of the MODIS instrument [28, Figure 7]. This preferentially diminishes the statistical
contributions of outliers to the MODIS time series relative to MISR, disproportionately
increasing the relative magnitude of the MISR spikes.



6.Deriving Trends from AOD Time Series. The green linear trend line shown in [28,
Figure 6a] was derived from MISR-MODIS AOD absolute differences constrained to have
coincident AERONET AOD retrievals. It is presented as a statistically significant indication
that AERONET cloud screening improves MISR-MODIS agreement, because the number of
AERONET sites available for the study increased with time over most of the study period
[28, Figure 3]. Having additional cloud screening from AERONET should help reduce
MISR-MODIS AOD differences, but one would expect smaller deviations later in the time
series on statistical grounds alone, due in part to the larger number of counts. If the
number of MISR-MODIS coincidences associated with the green curve scales roughly with
the number of AERONET sites (the numbers of MISR-AERONET and MODIS-AERONET
pairs scale this way according to [28, Figure 7]), there would be many more points between
July 2005 and July 2007 than early in the time series.

Instrument radiometric calibration can also contribute to apparent trends, though this
factor has been studied with a range of methods [33-36], and the uncertainties are too
small to account for the ~0.05 AOD trend shown in [28, Figure 6]. For example, [14]
reports a decrease of ~0.02 in MODIS-Terra AOD average absolute error over land relative
to AERONET between 2000 and 2007, which might be explained by a known <2% drift in
the MODIS blue-band calibration. No such trend is seen for MODIS AOD over ocean, which
does not use blue-band radiances. More importantly, these plots show aggregated land and
ocean data, and there are many more counts over ocean (e.g., Table 1).

The varying number of counts has the additional effect of making earlier times more
sensitive to large outliers. The three largest peaks in the MODIS-MISR time series with
AERONET actually occur in April 2001 and in June and August 2002, near the beginning of
the series, whereas the smallest values appear at the very end of the curve, between
September 2008 and February 2009. If the trend line represents a linear fit with equal
weight to the entire series, the high early peaks and low values at the end would exert
leverage on the resulting slope. Small AERONET AOD values at the end [28, Figure 2c] are
associated with a precipitous decrease in available AERONET stations after April 2008 [28,
Figure 3], which, according to the text, reduced the sampling to a small number of what are
apparently low-AOD sites. No explanation for the high early peaks is given in [28];
however, these could come, for example, from preferential sampling of the variability in
high-AOD events at the AERONET sites used. Lacking further information, limited sampling
could allow outliers or unique events to dominate the beginning of the time series, whereas
greater sampling would damp outliers later in the time series and a small number of low-
AOD cases dominate the very end, combining to produce the apparent trend shown by the
green curve.

7.Statistical Characterization of Measurement Uncertainty. In the discussion following
[28, Figures 6 and 7], it is asserted that the MISR and MODIS accuracy statements
published in [4, 10], giving the percent of retrieval results falling within a confidence
envelope when compared to AERONET validation data “... is both misleading... and
inconvenient. Indeed, it cannot be applied to an arbitrary MODIS or MISR pixel since one
does not know whether this pixel is one of the 67% ‘good’ pixels or one of the 33% ‘bad’
pixels.” As summarized in the Introduction to this response, validation of the retrieval
results has been done both statistically and through detailed, quantitative analysis of
individual, representative cases. The two approaches are complementary; statistical
analyses have the advantage of identifying broad trends and patterns, but in themselves,



provide neither explanations nor details about specific cases. We have used, and continue
to use, the combination of approaches to assess data quality, identify issues, and upgrade
the retrieval algorithms, to the extent possible.

8. Application of MISR and MODIS Aerosol Products. Effective use of the MISR and MODIS
aerosol products depends upon (1) choosing problems appropriate to the available
measurements, and (2) properly using the data, in light of the known strengths and
limitations. Many successful applications of these data to global- and regional-scale
questions are already presented in the literature. They range from assessing zonal mean or
global aerosol short-wave forcing [37-42] and regional long-wave forcing [43], to
improving aerosol forecasting through data assimilation [44, 45], monitoring dust and
pollution plume evolution [46, 47] and air quality [48, 49], mapping aerosol air mass type
evolution [50], and validating aerosol transport model AOD simulations [51, 52]. In each
case, ways of exploiting the strengths of the MISR and MODIS data have been found, and in
many cases, independent validation was performed specific to the application. Often, these
data sets are combined with each other, with other data, and with model simulations, as
required to deal with the coverage and content limitations documented in the data product
quality statements and validation papers cited above.

This integrated approach is especially needed for long-term trend analysis, which is
extremely sensitive to variability in observing conditions, as well as aerosol amount and
type variations combined with sampling biases inherent in the global data sets (Section 6
above; see [53] for a demonstration of how this can be done). Similarly, given sampling
biases and limited particle microphysical property information in the satellite data, major
advances in assessing aerosol direct radiative forcing globally will likely require the
application of data from multiple sources and models [12, 54]. We continue to work
toward developing constructive approaches to these cutting-edge questions, taking
advantage of the complementary nature of MISR, MODIS, and other satellite and suborbital
data.
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FIGURE CAPTION

Figure 1. January, March, and July 2006 global RSTD values for MISR-MODIS AOD
discrepancies, over ocean and land separately. The absolute deviations were placed in
rank order for each population, and RSTDs were calculated for progressively larger
fractions of the total. The data shown are from MISR Version 22 and MODIS Collection 5.
Only the values at the extreme right of each plot are considered in [28].



Table 1. Example values of MISR-MODIS discrepancy and agreement metrics †

Jan 06 –
Ocean

Mar 06 –
Ocean

Jul 06 -
Ocean

Jan 06 -
Land

Mar 06 -
Land

Jul 06 -
Land

Jan 06 –
Land+Oce.

Mar 06 –
Land+Oce

Jul 06 –
Land+Oce.

Counts 9,450,478 9,638,995 10,806,131 2,647,938 2,637,051 5,293,638 12,098,416 12,276,046 16,099,769
MISR <AOD> 0.140 0.148 0.108 0.162 0.203 0.147 0.145 0.160 0.120
MODIS <AOD> 0.138 0.149 0.094 0.120 0.198 0.125 0.134 0.160 0.104

Measures of Discrepancy (%)
[Higher values indicate poorer agreement]

RSTD 32 37 37 85 90 110 50 61 81
RSTD from [24] 31 § 44§ 36§ 87§ 92§ 110§ 69# 70# 77#

RSTD (0.05 δ) * 30 29 38 27 22 29 29 27 34
AAD 21 22 23 62 54 61 31 31 38

Measures of Agreement (%)
[Higher values indicate better agreement]

Envelope
0.05^20%

85 83 88 32 34 34 74 72 71

Envelope
0.03^10%

64 59 67 18 19 19 54 50 51

Abs. <= 0.05 84 81 88 30 30 32 72
(62¶)

70
(47¶)

70
(40 ¶)

Abs. <= 0.03 63 58 67 18 17 18 53
(44¶)

50
(35 ¶)

51
(28¶)

Rel. <=20% 54 50 40 15 19 15 46 43 32
Rel. <=10% 30 27 22 8 10 7 25 23 19

† RSTD, the Relative Standard Deviation, is a measure of discrepancy, defined by Equation 1. The AAD is defined by
Equation 2. The measures of agreement report the percent of MISR mid-visible AOD values falling within the envelope
of (1) 0.05 or 20% MODIS AOD, (2) 0.03 or 10% MODIS AOD, (3) within the Absolute-only AOD criterion of 0.05 or (4)
0.03, and (5) within the Relative-only criterion of 20% MODIS AOD or (6) 10% MODIS AOD, respectively. MISR
Version 22 and MODIS Collection 5 data are used throughout. All statistics are evaluated for total monthly MISR-
MODIS coincident AOD data sets over land, ocean, or land + ocean.
§Read from Mishchenko et al., 2010, Figure 1c.
#Read from Mishchenko et al., 2010, Figure 6c.



¶Read from Mishchenko et al., 2010, Figure 4a or 4b.
*RSTD calculated by comparing MISR perturbed by 0.05 x R + 0.05 (see text)




